IMPACT: International Journal of Research in Applied,
Natural and Social Sciences (IMPACT: IJRANSS)
ISSN (P): 2347-4580; ISSN (E): 2321-8851

Vol. 7, Issue 11, Nov 2019, 15-28

© Impact Journals

D-CONCURRENT VECTOR FIELD IN A FINSLER SPACE OF THR EE-DIMENSIONS

S. C. Rastogi
Professor (Retd.), Department of Mathematics, S&hambhar Nath Institute of Engineering
Research and Technology (SVNIERT), Barabanki, Btadesh, India.

Received:22 Nov 2019 Accepted: 27 Nov 2019 Published: 30 Nov 2019

ABSTRACT

Concurrent vector fields in a Finsler space werstfof all defined and studied by Tachibana [9]1850, followed by
Matsumoto and Eguchi [2] and others. In 2004, Rgstmd Dwivedi [4] studied the existence of conemtrvector fields
in a Finsler space of n-dimensions and showed thatdefinition of concurrent vector fields in itsepent form is
unsuitable. Further, they modified the definitidhconcurrent vector fields in a Finsler space oflimensions. Recently,
Rastogi [6], defined and studied weakly and palgigloncurrent vector fields in a Finsler space lofee-dimensions. The
purpose of the present paper is to define and stusgctor field Xx) in F, called D-concurrent vector field, which is
based on a tensor ;P defined and studied by Rastogi [5,7]. We have dlsiined and studied weakly and partially D-

concurrent vector fields of various types and rielahip between them.
KEYWORDS:Concurrent vector, Finsler Space, Three-Dimensions

INTRODUCTION

In a three-dimensional Finsler space fetric function is represented by L(x,y), metéasor by g=lli+mm+nn

and angular metric tensor by A m m; + n n. The h- and v-covariant derivatives of unit vedtelds | m;and nare given
by [3], [8]:

liy =0, my=nh, n;=-mh, (1.1)

li/fj = L-1 hij, mi/fj = L-1(-li mj + ni vj), nifjj = -L-1(li nj + mi vj), (1.2)
where hand y are, respectively, h- and v-connection vectoFiiWe have well-known torsion tensof,@ F°, defined as

Cik =Gy m my me =3 0iC 2 M my n — Cay mi iy i} + Croy 1y 1y (1.3)

Rastogi and Dwivedi [4] have given the following dified definition of concurrent vector field in dnsler space of n-

dimensions.

Definition 1.: A vector field X(x) in a Finsler space of n-dimensiorsi§said to be a concurrent vector field, if it
satisfies (i) XAijk =a hy and (ii) X,j =- Sij, wherea is a non-zero arbitrary scalar function of x anaid other terms have

their usual meaning.

Recently, Rastogi [5] has defined a third order swatric tensor i in P, in the following form:

Dij = Dy my my my + Doy m ny 0y + 351040 3 M my 0 + Dy my 0y n}, (1.4
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where G I'= 0, Dy ¢* = D =D n, Dy + Dg = D and By + Dy, = 0.
Alternatively, Oy is expressed as

Dix = Dy my my my + Dgy iy ny n + 310{D 3 My my n — Dy my 1y n}

Let us assume that there exists a vector fi&g, ¥, in F° given by

X' =al +pm +yn.

Taking h-covariant derivative [3] of equation (1&8)d using (1.1), we get
X =ay '+ Br—y h) m + @, +p h) 1,

which by virtue of X, = - &', gives

O == by B =y he—my e = - B A + 1), o =-1, Bo =7 ho, Y10 =B ho,

oM =0pm=yhm-21ym=-phm,

arN =08, N=yhn,y,n"=-@hn+1).

Further taking v-covariant derivative [3] of equeti(1.6) and using (1.2), we get
X = oy = LB my +y )} + m{By + Lo my —yvy)}

+{y + L me + B v)}

D-Concurrent Vector Field

(1.5)

(1.6)

1.7)

(1.8)

(1.9)

Def. 2.1.: A vector field X(x) shall be called a D-concurrent vector field airFinsler space of three-dimensioris ifit

satisfies

(i) X'y = -8, (i) X' Dy =O(x,y) .

where©(X, y) is a non-zero scalar function of x and y.
Equations (1.5) and (2.1) by virtue of (1.6) sluhlle

© hy = m m(B D) +7v D) + i n(y Dz =B D)

+(m ne + mc )(B D) —v Do)

Multiplying equation (2.2), respectively, by and i, we get
© m=m(B Dy +v D) + (B D) —v Dwy)

and

© ne=nc(y D) =P D)) + Mk (B D) —v Dwy)

From equations (2.3) a, b, we can obtain

© =B Dy +v D) =v D2y — B Dyyy, which means

28 Dy =v(Dz) — D)), B D) =7 Dy

(2.1)

2.2)

(2.3) a

(2.3) b

(2.4)
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From the equations given in (2.4), we easily get
2 Dy’ — D Dg) + Dgy” = 0 (2.5)
Hence

Theorem 2.1.:In a three-dimensional Finsler spacgiFa vector field Xis D-concurrent, coefficients ) D and Ds,

are related by equation (2.5).
Taking h-covariant derivative of equation (1.5), @sain by virtue of equation (1.1)
Dijr = {Dyr — 3 Dy h} mi my mg + {D 2y — 3 Dy b} ni my ne
200D @ + 3 Doy b} mi my ne {D @y + (Dzy — 2 Dghe} mi iy n, (2.6)
which for Qy = Dy gives [5]:
Qik = {Dyo— 3 D) ho} mi my my + {D 20 — 3 Dy ho} Ni 1y e +2110[{D 300
+ 3 Dy ho} mi my ne <{D a0 + (Dp2) — 2 Day)ho} mi 0y ] (2.7)

If we take h-covariant derivative of equation (2iil)we get on simplification by virtue of equat®if1.7) and

(1.8), following relation
M M B(Dqyr — 3 D) M) +v(Degyr + 3 Dy hy) — Dy My — Day - Oy
+ 0 ny(Deyr — 3 By hy) =B{D @yr + (D) — 2 Dg))he} + D gy M = Dzy N — 641
+(my ne + mc)[B(Degyr + 3 Dy ) - r{D @y + (D) — 2 Dy}
—Dgm+Dgyn]=0 (2.8)

Multiplying equation (2.8) by’ we can obtain ®; =y D, — D @ h + n), where we have used+ Dg, = D.
This with the help of equation (1.8) giveg = (1/2) ¢ D),. Hence:

Theorem 2.2.:In a three-dimensional Finsler spack iFa vector field Xis D-concurrent, it satisfiesi(&-,-k =(1/2) ¢
D)o hjk-

If we multiply equation (2.8), respectively, by and h we get

O = B(Dwyir — 3 Bay ) +(Deayr + 3 Dy ) — Dy M — Digy 1y, (2.9a

O =y(D@yr — 3 Oy h) =B{D @y + (De) — 2 Dz)h} + Dy My — Dy 1y (2.9) b
and

B(Deyr + 3 Dy h) - {D @y + (D — 2 Bgh} = Dgy My + Dy n] = 0, 2.9 c

which when multiplied, respectively, by emd i give
O M =B(Dgyr M — 3 DOg) hpyzp) +¥(Dgyr M + 3 Dy hpya)) — Dy, (2.10) a
O M =y(Deyr M — 3 Dy Mpyz2) —B{D wyr M +(D2) — 2 Dz))hp)a+D (1)(2.10)b

O N =B(Dyr M — 3 D) Mpyzd +¥(Dyr N + 3 Dy pjag) — Dy (2.10) c
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Oy N =y(Deyr N = 3 Dy hpyzd) =B{D @y N + (D) — 2 D3)hzysz — Dz (2.10) d
and
B(D@yr M + 3 D) hpyz)) - Y{D @yr M + (Dz) — 2 Dg)hpys — Dy =0 (2.10) e
B(Deyr N + 3 Dy hpyza) - v{D e M + (D) — 2 Dg))hzaqt + Dgy = 0. (2.10) f
From equations (2.10) a and (2.10) b, we can obtain
(26/r—y DIry mr +p D h2)32 =0 (211) a
Similarly, from (2.10) ¢ and (2.10) d, we get
(264 —y D) N+ D B hyzz+1)=0 (2.11) b
Hence

Theorem 2.3.:In a three-dimensional Finsler space, in case@fcancurrent vector field X

(i) coefficients Oy, D) and Q) satisfy equations (2.10) a, b, ¢, d, e, f

(ii) © satisfies equations (2.11) a, b.

Taking v-covariant derivative of equation (1.5) arsihg results of equation (1.2), we get on singation

Dijrr = Beyr My my my + Begye M 0y N 215,10 Bayr My My N + Byaye M 10y 1y

L™k [l Dafm(my m — i ng — n(my n + me )} Doy 1y i my e

+ Dg{m, ne(li my +  m) + meny i mj] (2.12)
where

B(1)r = D(L)//r — 3 L-1 D(3) vr, B(2)r = D(2)//r 3 L-1 D(1) vr, (2.13) a
B(3)r = D(3)//r + 3 L-1 D(1) vr, B(4)r = D(L)//r £-1(2 D(3) — D(2))vr (2.13)b

Taking v-covariant derivative of equation (2.1),(iusing equations (1.5), (1.9) and (2.12) and iplyihg the
resulting equation by'g we get on simplification

20y = Dlyy + Lo (M — )] + 2B Dy +v D, (2.14)

which leads to

20//0 = (y D)/[0 + 2B D(1)//0 (2.15) a
206/Ir mr = {(yD)//r + 2B D(1)//r)} mr + L-1 Da (2.15) b
20/Ir nr = {(yD)//r + 28 D(1)//r)} nr = L-1 Do (2.15) c
Hence

Theorem 2.4:1n a three-dimensional Finsler space, in case Bf@ncurrent vector field X6, is given by equation
(2.14) and satisfies (2.15) a, b, c.
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Similar, to a C-reducible Finsler space Matsumafo the author [5] has defined, D-reducible Finslpace &in

which the tensor | satisfies:
Dij = (1/4) X, 0thi Db, (2.16)
which by virtue of equation (2.1), shall give
O hy = (DIA)[B(M; N + M 1) + (e + 2 N - (217)
Multiplying equation (2.17) by’ we get on simplification

Theorem 2.5.:In a three-dimensional D-reducible Finsler spatddf a D-concurrent vector field'), © = (1/2)y D.

Taking h-covariant differentiation of2=y D, we get B, =y, D+ vy Dy, which when compared with equation 2
©,=yD,—-D,—B D h, gives

D(y,+ph+n)=0 (2.18)
From equation (2.18), we can obtain

Yrm +B =0,y N +Physz+1=0 (2.19)
Hence:

Theorem 2.6.:In a three-dimensional D-reducible Finsler spatefdf a D-concurrent vector field'), p andy satisfy

equations given by (2.19).

Taking v-covariant differentiation of@2=y D, we get B, =y, D+ y Dy, which when compared with equation
(2.14) leads to

28 Dy + L*Da (M -n) =0, (2.20)
From equation (2.20), we easily obtain
Do = 0, Daysr M + Dy ' = 0 (2.21)
Hence:
Theorem 2.7.:In a three-dimensional D-reducible Finsler spatedf a D-concurrent vector field'§), scalar D satisfies
equation (2.21).
3. WEAKLY D-CONCURRENT VECTOR FIELDS.

From equation (1.5), by virtue ofij.Dmk = ‘Dj and Qi = *Dj, we can get

‘Dij = D(1)(mi mj — ni nj) + D(3)(mi nj + mj ni) (3.1)
and
*Djj = Dy ny + Dy m m; — Dygy(mi ny + my ), (3.2)

which are symmetric tensors in i and j and satisfy

Dik = ‘Djj my + *Dy ng (3.3)
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From equations (3.1) and (3.2), we can get
‘D; = lDij m] = D(l) m+ D(3) n, D= lDij d = D(3) m, — D(l) N (34) a
*Di = *Dij rnl = “Di, **Di = *Dij nl = D(2) n— D(l) I’ni, (34) b

such that ‘[ = ‘D; my + *D; i and *D; = "D m; + **D; n,.

Now, we shall give the following definitions:

Def. 3.1.:A vector field X(x) in a Finsler space®Bhall be called weakly D-concurrent vector fiefdigst kind if (i) X'; =

- 8ij and (i) X ‘D; = ¢(x, y), wherep(x, y) is a non-zero scalar function of x and y.
From equation (3.4), a and this definition, we geah
¢(%,y) =B Dy +7 D)
and
@ =By Daay + B Dy + v Dzy + v Deayj
Substituting the values @f; andy; from equation (1.8) in (3.6), we get
@5 = B(Dwy — D@y W) + v(Deayj + Doy ) = (Bay My + Digy )
which gives
90 = {B(Dyo— Dy ho) +v(Dezyo + Dy ho)},
@5 M = B(Dgay; M- D) hpyzz) + y(Daym + Dyay hiyzz) — Doy
and
¢ M = B(D ey N— Dz Myza) +(Degyj M + Dyyy Meysa) — Des)

Hence

(3.5)

(3.6)

(3.7)

(3.8)a

(3.8) b

(3.8) c

Theorem 3.1.:In a three-dimensional Finsler spack for a weekly D-concurrent vector field of firsind, scalarg

satisfies equations (3.8) a, b, c.

Def. 3.2.:A vector field X(x) in a Finsler space®&hall be called weakly D-concurrent vector fiefdsecond kind if (i)

X' = -8 and (i) X “D; = y(x, y), wherey(x, y) is a non-zero scalar function of x and y.
Substituting the value of “Dfrom equation (3.3) and using Def. 3.2., we get
v(xy) =B D —v Day
Differentiating equation (3.9) a and using equatib), we get
;i = B(Dey + Dy By) =v(Dayj — Dy ) = Digy my + Dy 1y
which leads to
w/0 =B(D(3)/0 + D(1) h0) +(D(1)/0 — D(3) hO),

w/j mj = B(D(3)/j mj+ D(1) h2)32) (D(1)/j mj — D(3) h2)32) — D(3)

(3.9 a

(3.9) b

(3.10) a

(3)16
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wlj nj = B(D(3)/j nj+ D(1) h2)33) <(D(L)/j nj — D(3) h2)33) + D(1) (3)16
Hence

Theorem 3.2.:In a three-dimensional Finsler space fér a weakly D- concurrent vector field of secdsind, y satisfies
equations (3.10) a, b, c.

Def. 3.3.:A vector field X(x) in a Finsler space®Bhall be called weakly D-concurrent vector fiefatord kind if (i) Xi,j

= -8} and (i) X **D; = o(x,y), wheren(x,y) is a non-zero scalar function of x and y.
Substituting the value of **drom equation (3.4) in Def. 3.3, we get
o(X,y) =7 D) —B D (3.11) a
Differentiating equation (3.11) a and using equa(ib.8), we can obtain
@ =Y(De2yj — Dy i) =B(Day; + Dy hy) + Dy My — Dy 1y 311)b

From equation (3.11) b, we can obtain

0 = Y(D2y0 — Dy ho) —B(Dayo + D2y ho) (3.12) a
@y M =y(Dy; M= Dy hayaz) —B(Deay; M+ Dizy haya) + Dy (3:12)b
@j; M =y(Dgy; M — Dpay Moyza) —B(Deay; W + Doy Moysa) — Dy (3.12)c
Hence

Theorem 3.3.:In a three-dimensional Finsler spac?a for a weakly D-concurrent vector field of thirihl, o satisfies
equations (3.12) a, b, c.

Using the fact that Xs a function of x alone, we can observe thiat XX? Cipr, which by virtue of equation (1.3),

on simplification shall give
Xillr = B{C(1) mi mr — C(2)(mi nr + ni mr) + C(3) ni nr}
+v{C(2) ni nr — C(2) mi mr + C(3) (mi nr + ni mr)} (3.13)

Comparing equations (1.9) and (3.13), we can olestrat

ay — LB m +yn) =0, (3.14)a
Bir + L (@ m =y V) = (B Cay—y Cz) M + (y Czy — B Cezp) Nt (3.14) b
Yir + L_l((l m+B V) =y Cs)—B C)) M + (B C) +v Cpz)) v (3.14) c

Equations (3.14) a, b, c also giveays = 0,0y M = LB, a0 = LYy,  Byo =0,y M =P Cay—y Coy L™ (00 —y
Vayaa), Bie T =y Ca)— B Coy + L™y Vaysayio = 0,7 M =y Czy =B Crzy— L (a + B Vay32), v N =B Cezy + ¥ Czy — LB Vayas

Taking v-covariant derivative of equation (3.5), get on simplification
o = M{D @)(B Cy =¥ C2 — Lat) + Dgy(y Czy —B Czy — L)}

+ n{D y(y Cg) =B Cz)) + D) (B Ci) +v C2)}
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+ B(D(L)//r — L-1 D(3) vr) +(D(3)//r + L-1 D(1) vr)

From equation (3.15), we can get

¢//0 =B D(L)//0 +y D(3)//0,

o/t mr ={D(1)( C(1) =y C(2) — L-Tu) + D)y C(3) —P C(2) — L-T)}
+ B(D(L)//r mr— L-1 D(3) v2)32) (D(3)//r mr + L-1 D(1) v2)32)
o/lrnr = {D(1)(y C(3) - C(2)) + D(3) § C(3) +y C(2))}

+B(D(L)//r nr — L-1 D(3) v2)33) 4(D(3)//r nr + L-1 D(1) v2)33)

Hence

(3.15)

(3.16) a

(3.16) b

(3.16) c

Theorem 3.4.:In a three-dimensional Finsler spacg for a weakly D- concurrent vector field of firkind, scalarg

satisfies equations (3.16) a, b, c.
Similarly, from equation (3.9) a, we can obtain
ylir=mr{D(3)(B C(1) -y C(2) - L-In) - D(1)fy C(3) —p C(2) — L-Tu)}
+nr{D(3)(y C(3) —p C(2)) - D(1)B C(3) +v C(2))}
+B(D@)/Ir + L-1 D(L) vr) =y(D(L)/Ir — L-1 D(3) vr)
which implies
w/i0 =B D(3)//0 —y D(L)//0
ylirmr={D(3)(B C(1) -y C(2) - L-Tn) - D(1)fy C(3) - C(2) — L-Tu)}
+ B(D(3)//r mr + L-1 D(1) v2)32) «(D(1)//r mr — L-1 D(3) v2)32)
wiir nr ={D(3)(y C(3) —p C(2)) - D(1)B C(3) +y C(2))}
+B(D(3)/Ir nr + L-1 D(1) v2)33) (D(L)//r nr — L-1 D(3) v2)33)

Hence

(3.17)

(3.18) a

(3.18) b

(3.18) ¢

Theorem 3.5.:In a three-dimensional Finsler space fler a weakly D-concurrent vector field of secdadd, y satisfies

equations (3.18) a, b, c.
From equation (3.11) a, we can obtain
ollr =mr{D(2)(y C(3) —p C(2) - L-T) - D(1)B C(1) -y C(2) — L-Tu)}
+nr{D(2)(B C(3) +v C(2)) — D(1)f C(3) —p C(2))}
+y(D(2)/Ir — L-1 D(L) vr) -B(D(L)/Ir + L-1 D(2) vr)
which leads to

o0 =7 Deyro —B Deayio

(3.19)

(3.20) a
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e M = {D )y Cay—B Cio)— L) — Dyyy(B Cy =7 Cpy — L)}

+Y(Deayr M = L™ Dyy Vajad) —B(Dayr + L™ Dz) Vayeo) (3.20) b
of/r nr ={D(2)(B C(3) +vy C(2)) — D(1)¢ C(3) —p C(2))}

+y(Dgyr M — L™ Dy Voy39) —B(Deaye M + L™ Dy Voy39) (3.20) c
Hence

Theorem 3.6.:In a three-dimensional Finsler space fer a weakly D-concurrent vector field of thirihll, o satisfies
equations (3.20) a, b, c.

In a D-reducible Finsler spacé, equation (2.16), by virtue of (3.1) and (3.2)egv

‘Dj = (D/4) (mny + mn), *Dj = (D/4)(m my + 3 n n) (3.21) a
while using equations (3.4) a, b, we get

‘D; = (D/4) n, *D; = "D, = (D/4) m, **D; = 3(D/4) n (3.21) b

From these equations, we can obtain

Dg) = 0, D) = 3D/4, D) = D/4 (3.21) ¢
and also

X'‘D; =yD/4, X *D; = p D/4, X **D; = 3yD/4 (3.22) a
X''Dj = (D/4)y m + B ny), X' *Dj; = (D/4)B my + 3y ) (3.22)b
Hence

Theorem 3.7.:In a three-dimensional D-reducible Finsler spatecBefficients By, D) and Qs are given by (3.21) c,

while weakly and partially D-concurrent vector €éls| respectively, satisfy equations (3.22) a ar2P{3b.

4. PARTIALLY D-CONCURRENT VECTOR FIELD OF FIRST KIN D.

Def. 4.1.:A vector field X(x), in a three-dimensional Finsler spadedhall be called partially D-concurrent vectotdief

first kind, if it satisfies
(i) X'y = -8, (i) X' 'Dy = 6;(xY), (4.2)
where6j(x,y) is a non-zero vector function of x and y.
From equations (3.1) and (4.1), we can get
©; = DB m -y n) + Dy m +p n) (4.2)
With the help of equations (3.5) and (3.9) a, we gat
O =em+yn (4.3)

showing that
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Ojlj=0,06jmj=¢ and®jnj=y

Oj/k = (o/k —y hk) mj + gu/k + ¢ hk) nj

Oj/k lj = 0, ©j/k Ik = (¢/0 —y h0) mj + /0 + ¢ hO) nj
Oj/k mj = o/k —y hk, ©j/k nj = y/k + ¢ hk

Oj/k mk = (p/k mk —y h2)32) mj + (/k mk +¢ h2)32) nj
Oj/k nk = (e/k nk —y h2)33) mj + {y/k nk +¢ h2)33) nj

Hence

(4.4) a
440D
(4.4)c
(4.4)d
4.9 e

(4.4) f

Equations (4.3) and (4.4) show that partially D-@ament vector field of first kind is a combinatiof weakly D-

concurrent vector fields of first and second kind.

Theorem 4.1.: The partially D-concurrent vector field of firsinkl implies the existence of weakly D-concurrenttee

fields of first and second kind, but the convessaot true.
From equation (4.3), we can also obtain
Ounc = @i — LT wv) m+ (wue + LT vi) =L 6,
which leads to
Ojllk |j = - L-1 6k, ¢jl/k Ik = (¢//0 mj +y//0 nj)
Ojllk mj = ollk — L-1y vk, ©j//k nj =y//k + L-1 ¢ vk
Oy M = (@ M= Ly Vyz)) my + (e M L Vo) = L i
Oy M = (@i M= L™y Vo) My + (e M+ L o vped =Ly

Hence

(4.5)

(4.6) a
(4.6)b
(4.6) c

4.6) d

Theorem 4.2.:In a Finsler space®Ffor D-partially concurrent vector field of firkind, vector fieldo; satisfies equations

(4.5), (4.6) a, b, ¢, d.

Def. 4.2.:A vector field X(x) in a Finsler space®Fshall be called D-partially concurrent vectoidief second kind, if it

satisfies (i) %; = - 8, (i) X' *Dy = g;(x.y),
whereg;(x,y) is a non-zero vector function of x and y.
From equations (3.2) and (4.7), we can get
¢j = (B D(3) —y D(1)) mj + ¢ D(2) - D(1)) nj
which by virtue of (3.9) a and (3.11) a, leads to
G =y mton

Hence

@.7)

(4.8)

(4.9)
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Theorem 4.3.:The partially D-concurrent vector field of secoridckimplies the existence of weakly D-concurrenttee

fields of second and third kind, but the convesseat true.

From equation (4.9), by taking h-covariant derivatiwe can easily obtain

0j/k = (w/k — o hk) mj + @/k —y hk) nj (4.10) a
oj/k lj = 0, ¢j/k Ik = (y/0—» h0) mj + ©/0 —y hO) nj (4.10) b
oj/lk mj = y/k — o hk, ej/k nj = o/k —y hk (4.10)c
0j/k mk = (y/k mk —® h2)32) mj + @/k mk —y h2)32) nj (4.10)d
0j/k nk = (y/k nk—® h2)33) mj + {/k nk —y h2)33) nj (4.10) e
Hence

Theorem 4.4.:In a Finsler space,®Ffor D-partially concurrent vector field of secomkéhd, vector fieldg; satisfies
equations (4.10) a, b, c, d, e.

If we take v-covariant derivative, equation (4.9) \ead to
Pk = (Wi — Lo vi) my + (o + Ly vi) iy — L L (4.11)a

which implies

ojllk lj = - L-1¢k,oj//k Ik = w//0 mj + w//0 nj (4.11)b
ojllk mj = yilk — L-1o vk, @j//k nj = e//k + L-1y vk (411)c
@jllk mk =(y//k mk— L-1 v2)32) mj + (p//k mk + L-1y v2)32) nj — L-1 ljy (4.11)d
ojllk nk = (y//k nk — L-1o v2)33) mj + o//k nk + L-1y v2)33) nj — L-1 ljp (411)e
Hence

Theorem 4.5.:In a Finsler space’Ffor D-partially concurrent vector field of secokihd, vector fieldgy satisfies
equations (4.11) a, b, ¢, d, e.

Remark. If we observe equations (1.4), (3.1) and (3.2),car notice that tensoryD= ‘Dy my + *Dj ny; therefore, it is
obvious that D-concurrent vector field is a combimraof D-partially concurrent vector fields ofdirand second kind, but

the converse is not true.
5. CURVATURE PROPERTIES.
If D’ jj is a tensor based omyDand defined as Rastogi [4]:
D’ijkr = Dirp Dpjk — Dikp Dpjr (5.2)
we can easily obtain from Def. 2.1
X' D’j =6 (hp D, — N D) = 0. (5.2)

Hence
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Theorem 5.1.:In a three-dimensional Finsler spacé the curvature tensor [’ with a D-concurrent vector field

X'(x)satisfies equation (5.2).
In an earlier paper [7], | have defined a curvateresor U, as follows:
Uijkh = C(I,j){Djkh/I + Dy erh}1 (5-3)
Multiplying equation (5.3) by X we get on simplification
X' Uijn = X Diknit — Din — O (M My + N 1),
which can be expressed as
Xi Uijkh = (Xi 1Ai — D(1)) mj mk mh+ (Xi3Ai — D(2))nj nk nh

+ (Xi4Ai — D(3))3(j,k,h) mj mk nh — (Xi2Ai — DL)Y.(j,k.h) mj nk nh

-6/j (mk mh + nk nh), (5.4)
where

1Ai = D(1)/I — 3 D(3) hi, 2Ai = D(1)/I + (D(2) — D(3))hi, (55)a
3Ai = D(2)/l - 3 D(1) hi, 4Ai = D3)/l + 3 D(1) hi (55)b
1A0 = 1Ai li, 2A0 = 2Ai li, 3A0 = 3Ai li, 4A0 = 4Aili (55)c

Itis known that the tensorik} can also be expressed as Rastogi [7]:

Uijkh = 1Aij mk mh + 2Aij mk nh + 3Aij nk mh + 4Aipk nh, (5.6)
where

1Aij = C(1,)[1Ai mj + 4Ai nj + {D(3)(LA0 — 2A0) —2 D(1)4A0} mj ni] (5.7) a
2Aij = C(1,j)[4Ai mj — 2Ai nj + {D(3)(4A0 — 3A0) +2 D(1)2A0} mj ni] (5.7) b
3Aij = C(1,))[4Ai mj — 2Ai nj + {D(1)(2A0 — 1A0) +(D(2) — D(3)) 4A0} mj ni] (5.7) ¢

4Aij = C(1,)[2A] mi — 3A]j ni + {D(1)(3A0 — 4A0) —(D(2) — D(3))2A0} mj nil; (5.7)d

therefore, it is also possible to write equatiod)5n an alternative form

X' Ujn = By My my my, + By 1y Ny M+ Bigy my my 1y,

+ B(4)(mk mh nj + mh mj nk) — B(5) (mj nk nh + mk mj)

- B(6) mh nj nk — D/j (mk mh + nk nh), (5.8)
where

B(1) = Xi1Ai + © 1A0 — D(1) +B(1A0 D(1) + 4A0 D(3)) +/(4A0 D(1) — 2A0 D(3)),

B(2) = Xi 3Ai + ©3A0 — D(2) —B(4A0 D(1) + 2A0 D(2)) +/(3A0 D(2) + 2A0 D(1)),

B(3) = Xi4Ai + ©4A0 — D(3) 4B(4A0 D(1) — 2A0 D(3)) +(3A0 D(3) — 2A0 D(1)),
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B(4) = Xi4Ai + ©4A0 +B(1A0 D(3) — 4A0 D(1)) +(4A0 D(3) + 2A0 D(1)),
B(5) = Xi2Ai + © 2A0 — D(1) -B(4A0 D(3) + 2A0 D(1)) +/(3A0 D(1) +2A0 D(3)),
B(6) = Xi 2Ai + © 2A0 + D(3) — D(1) 4B(1A0 D(1) — 4A0 D(2)) +#(4A0 D(1) + 2A0 D(2))

Hence

Theorem 5.2.:In a three-dimensional Finsler spact fhe curvature tensoriid, with a D-concurrent vector field'x)

satisfies equation (5.4) or (5.8).

The author [7] has defined a tensggVin F, as follows:

Viih = L Djm + Ir Di + lk Dijn + | Dikn + | Djn (5.9
From equation (5.9), on simplification by virtueerjuations (1.5), (1.6), (2.1) and (2.6), we cataiob

X' Vikn = L [B{*An m M —Ap 1y 0 + “Ap(m; 0y + me n)}

+y{*An m m +3A, iy ne —*An(m; e+ me )}

+ O(lj hkh + Ik hjh + Ih hjk) +a Djkh (5.10)

which implies

Theorem 5.3.:In a three-dimensional Finsler spack fhe curvature tensory,, with a D-concurrent vector field'¢)

satisfies equation (5.10).
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